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The St. Marys River is a major producer of parasitic sea lampreys (Petromyzon marinus) to Lake Huron making it
an important area for larval control. Bayluscide treatments are conducted in areas of high larval density requiring
density estimation at fine spatial scales to inform treatment decisions. We evaluated six methods of estimating
spatially specific density including the currently used sampling-based estimates, a generalized linear model
(GLM) based on mean larval density per plot, a GLM based on larval density per sample, a generalized additive
model based on mean larval density per plot, a spatial age-structured population model, and a hybrid approach,
which averaged the best performing sampling- andmodel-basedmethods.Methodswere evaluated based on ac-
curacy in matching independent validation data. Specifically, the methods were evaluated based on their ability
to project plot-level larval density, identify highdensity plots for treatment, and rank plots in order based onden-
sity resulting in high numbers of sea lampreys killed per hectare treated. Performancewas variable, and no single
method outperformed the others for all metrics. Although the sampling-based estimation method and the GLM
based on catch data performed adequately for estimating density and identifying high density plots, the hybrid
approach was identified as the best method to inform sea lamprey control decisions in the St. Marys River due
to its consistent performance. Incorporating model-based approaches should lead to a more efficient and effec-
tive treatment program in the St. Marys River and aid in making decisions about the allocation of control
resources.

© 2014 International Association for Great Lakes Research. Published by Elsevier B.V. All rights reserved.
Introduction

Sea lamprey (Petromyzon marinus) invaded the upper Laurentian
Great Lakes (Lakes Superior, Huron, and Michigan) in the early 20th
century resulting in long term ecological changes and economic impacts
(Christie and Goddard, 2003; Lupi et al., 2003; Smith, 1971). Many fish-
eries in the Great Lakes collapsed in the 1950s and 60s due to a combi-
nation of sea lamprey predation and overfishing (Coble et al., 1990).
Since that time sea lamprey control efforts have greatly reduced the
numbers of parasitic sea lampreys in the Great Lakes making the reha-
bilitation of native piscivorous fish populations possible. The continued
success of the sea lamprey control and native fish restoration programs
relies on continued suppression of sea lamprey populations (Bronte
et al., 2003; Dobiesz et al., 2005; Madenjian et al., 2003).
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A large portion of the sea lamprey control efforts in the Great Lakes
focuses on the sedentary larval life stage. TFM (3-trifluoromethyl-
4-nitrophenol) is successfully used to control the larval stage through
treatments in streams and rivers. However, TFM application is not feasi-
ble in connecting channels and lentic areas (e.g., the St. Marys River), so
spot treatments are carried out in areas of high larval density using a
granular, bottom-release formulation of Bayluscide (2′,5-dichloro-4′-
nitro-salicylanilide; Fodale et al., 2003). The spot treatment approach
requires the estimation of larval density at relatively fine spatial scales
to identify areas for Bayluscide application (Fodale et al., 2003). Treating
areaswith the highest larval density ensures greater potential treatment
efficiency and effectiveness in terms of larvae killed per hectare treated.
Accurately estimating larval abundance can also be important because
decisions about the allocation of treatment resources among streams
depend on howmany total sea lamprey larvae are expected to be killed
by a treatment event using either TFM or Bayluscide (Slade et al., 2003).

The St.Marys River is one of themajor producers of parasitic sea lam-
preys in LakeHuron andnorthern LakeMichiganmaking it an important
area for sea lamprey assessment and control (Fodale et al., 2003; Schleen
et al., 2003). Starting in 1998, targeted Bayluscide applications have
.V. All rights reserved.
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been performed to control the larval life stage in the St. Marys River
(Fodale et al., 2003). Although large scale Bayluscide applications have
occurred in 1999, 2010, and 2011, only a small fraction of the suitable
larval sea lamprey habitat is treated in most years (Robinson et al.,
2013). These targeted treatments occur in areas thought to have high
densities of larvae greater than 100 mm, which are likely to metamor-
phose into parasitic juveniles. Decisions about which plots to treat are
based on spatially specific density estimates of larvae greater than 100
mm from deepwater electrofishing surveys that occur following
Bayluscide treatment in the previous year and on expert judgment. For
example, if the sea lamprey control agents think a plot has a high density
of sea lamprey larvae greater than 100 mm based on previous experi-
ence, but the deepwater electrofishing survey fails to identify that plot
as high density, the plot could still be treated. The overall approach is
limited by sample size, the subjectivity of expert judgment, and the
small number of larvae greater than 100 mm observed in any given
year. Out of the 541 deepwater electrofishing sampling events on
the St. Marys River in 2011, only 6 sea lamprey larvae greater than 100
mm were captured. In many cases, the correction for length-specific
capture efficiency of the deepwater electrofishing gear, which decreases
as larval sea lamprey length increases (Bergstedt and Genovese, 1994),
causes plots to be treated based on the observation of only one larva
greater than 100mm.Amodel based approach that quantitatively incor-
porates the entire 19 year time series of data, instead of just themost re-
cent year's data, may provide an alternative to the current method of
selecting plots for treatment and has the added benefits of being test-
able, transparent, and repeatable. The objective of thisworkwas to iden-
tify a statisticalmethod, ormethods thatwould lead to better estimation
of spatially specific density and abundance, resulting in an increase in
the potential effectiveness and efficiency of the Bayluscide-based treat-
ment program for larval sea lampreys in the in the St. Marys River.

Methods

We evaluated six methods of estimating spatially specific density
based on each method's ability to (1) accurately project plot-level
density, (2) identify high density plots for treatment, and (3) rank
plots based on density in an order that most closely matched rankings
based on independent validation data. The six density estimation
methods included the currently used sampling-based estimates, two
generalized linear models (GLMs), a generalized additive model
(GAM), a spatial age-structured population model recently developed
by Robinson et al. (2013) for the St. Marys River, and a hybrid approach,
which used the mean density from the sampling-based estimation
method and the best performing model-based method. Initially, a
model-averaging approach was tried in which the results of all five
methods were averaged (with equal weighting), but this approach
performed poorly. The hybrid approach was then developed as a way
to combine the results of the sample-based approach and the best
model-based approach. Thesemethods represent three levels of analyt-
ical complexity with the sampling-based estimates being easiest to im-
plement, followed by the GLMs and GAM, and finally the population
model. Performance of each estimation method was compared to inde-
pendent estimates of spatially specific density and abundance, based on
an intensive sampling effort (validation data).

Data

The upper St. Marys River contains 71 plots (830 ha. total), ranging
in size from 1.2 to 27.5 ha, for the purpose of applying Bayluscide and
conducting deepwater-electrofishing surveys for larval sea lampreys
(Fig. 1). These plots were defined as areas of high larval density based
on deepwater electrofishing surveys conducted during 1993–1996
(Fodale et al., 2003). A single treatment plot (Plot 10) was excluded
from all analysis because no sea lampreys were ever observed
there, reducing the number of treatment plots to 70. Plot-specific
Bayluscide treatment histories were available from 1998 through 2011
encompassing the entire duration of treatment efforts in the St. Marys
River.

A 19 year time series (1993–2011) of spatially referenced plot-
specific deepwater electrofishing data was available for larval sea lam-
preys in the St. Marys River. Electrofishing was conducted based on
the methods described in Bergstedt and Genovese (1994), and the
total length of each captured larval sea lamprey was recorded. Adaptive
samplingwas also conducted in a number of years, butwas not included
in the analysis. Electrofishing data were classified as either pre-
treatment or post-treatment, depending on the timing of sampling
relative to annual treatment events. Pre-treatment surveys are those
conducted just prior to the onset of treatment efforts in a given year
and were conducted on a limited basis in 1999, 2001, and 2003. Post-
treatment surveys are conducted annually following treatment efforts.
Survey data were also available from the period prior to the onset of
Bayluscide treatments (1993–1997).

With the exception of the population model, only post-treatment
data and data collected prior to the onset of Bayluscide applications
(1993–1997) were included in our analysis. Pre-treatment sampling
was excluded because it was only available in 1999, 2001, and 2003.
Post-treatment sampling was conducted in all years except 1997 and
1998, with the number of plots sampled annually ranging from 1 to
67 (total= 764 plots sampled over 19 years). The number of individual
electrofishing samples taken when a treatment plot was sampled
ranged from 1 to 76. Capture efficiency of the deepwater electrofishing
gear is reduced as larval sea lamprey length increases (Bergstedt and
Genovese, 1994), so a length-based gear selectivity correction was
applied to all larval catch data:

C ¼
X
i

1þ e Li�0:0229−1:732ð Þh i
; ð1Þ

where C is the adjusted catch for an individual electrofishing sample,
and L is the length of a larva i in mm (U.S. Fish and Wildlife Service
unpublished data).

Plot-specific larval density estimates (larvae ha−1) were calculated
for each year using the mean adjusted catch in a sample multiplied by
the area sampled (2.44 × 10−4 ha). Standard errors for the plot-
specific density estimates were calculated whenmultiple electrofishing
samples per-plot were available and at least one of themwas a positive
observation. When a single sample was taken or no larvae were cap-
tured, standard errors were estimated using a power function based
on the average relationship between sample size and standard error
estimates:

σd ¼ aNc
; ð2Þ

whereN is the sample size for a given plot and a and c are estimated pa-
rameters (a = 9080, c =−0.703, R2 = 0.40, p b 0.001) (Robinson,
2013; Robinson et al., 2013). Parameter a can be interpreted as the esti-
mated standard error of a larval density estimate when N = 1. Power
functions were used to estimate standard errors instead of using a con-
stant standard error (when the standard error could not be calculated)
so that observations of zero larvae in plots where many samples were
takenwould carry greater weight in themodel fitting than observations
when only one sample was taken.

High intensity pre-treatment deepwater electrofishing surveyswere
conducted in 2010 and 2011 as a means to validate the ability of each
estimation method to rank plots for treatment and project plot-
specific larval abundance. Prior to treatment in 2010, 16 plots were
sampled using deepwater electrofishing at a much higher intensity
(over six times as many samples in each plot, N4 samples per ha) than
would occur under normal sampling conditions (0.66 samples per
ha in 2011). Sampling areas were randomly selected within each plot.
A similar sampling effort was undertaken in 2011, where 10 plots



Fig. 1. The St. Marys River from the navigational locks in Sault Ste. Marie, Michigan and Ontario, to the southern end of Sugar Island. Coverage includes all plots that are assessed and con-
sidered for treatment. Dark gray areas are treatment plots and the white areas are considered out-of-plot (i.e., not treated). A portion of the out-of-plot areas that appear in the figure are
never surveyed (Lake George) and a small area that is surveyed is not included in the figure (near the southern end of Sugar Island). Inset shows location in the Great Lakes Region. The
major spawning area for sea lampreys in the river is located in the rapids north of the navigational locks.
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were intensively sampled. These sampling efforts were designed to in-
clude a range of high, medium and low density plots across two years,
and were separate from the annual sampling used to inform treatment
decisions. The increased sampling intensity and closer temporal prox-
imity to the timing of potential treatment events for the validation
data provided density and abundance estimates with substantially
greater precision (mean CV 54%) than those from the normal sampling
intensity (mean CV94%). Therefore, the density estimates from the high
intensity sampling data were considered the best possible estimates
(i.e., closest to the true density) and mean density per plot was used
to assess the performance of each estimation method.
Estimation methods

Six estimation methods were tested for predicting plot level density
and abundance (Fig. 2). The first method simply used the plot-specific
density estimates from the previous year's electrofishing sampling.
Next, two GLMs and one GAM were fit to the 1993–2009 and 1993–
2010 data to produce 2010 and 2011 projections respectively. The
spatial age-structured population model developed by Robinson et al.
(2013) was also used to produce plot-specific projections of density and
abundance in 2010 and 2011. Because none of the methods tested were
the best at predicting larval abundance for both 2010 and 2011,we devel-
oped an additional hybrid approach for estimating plot-level density by
averaging the two methods with the best performance in each year.

The GLMs and the GAM included plot as a categorical effect and
years-since-treatment as a covariate. A number of other potential ex-
planatory variables were initially considered in model development
(e.g., depth, habitat, and date). However, effects of additional explanatory
variables were not estimable due to the limitations of the available data
and their redundancy with the categorical plot variable. The first GLM
used the natural log transformed plot-level mean larval density
estimates as the response variable, a Gaussian error structure and an
identity link function,

log Dp;y þ c
� �

¼ β0 þ β1P þ β2Tp;y þ εp;y; ð3Þ

where Dp,y are the density estimates for each plot p and year y, c is a con-
stant, P is a categorical plot variable, T is the number of years since last
treatment for each plot and year, and the βs are estimated parameters.
If a plot had never been treated, the years-since-treatment was set at
20 (length of the time series +1). As with many other fisheries data,
standard errors of density estimates increased proportionally with densi-
ty, and thus the coefficient of variationwas approximately constant (Punt
et al., 2000). Therefore, a variance stabilizing log transformation was ap-
plied to the density estimates (Venables andDichmont, 2004). A constant
(c = 24.7), half of the lowest plot-level non-zero density estimate, was
added to each density estimate to avoid taking the log of zero. Each ob-
served plot-level density estimate was weighted based on the calculated
variance of the natural logarithm of the plot specific density estimates, so
estimates with greater precision and higher sample size would carry
greater weight in the model. The variance of the natural logarithm of
the plot specific density estimates, σLN

2 , can be calculated as,

σ2
LN ¼ log

σ2
N

Dp;y þ c

 !2

þ 1

" #
; ð4Þ

where σN
2 the variance of each density estimate. The second GLM used

catch data at the scale of an individual electrofishing sample (Cp,y), a neg-
ative binomial error structure, and a log link function, andwas performed
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using the glm.nb function in package MASS (Venables and Ripley, 2002)
of the program R (R Development Core Team, 2012).

Cp;y ¼ log β0 þ β1P þ β2Tp;y þ εp;y
� �

: ð5Þ

The negative binomial distribution is often used to describe
catches of benthic organisms because it accommodates highly
variable catches that include many zeros (Elliott, 1977) and avoids
the need for data transformation or the addition of a constant
(Maunder and Punt, 2004).

A GAMmaybe used in situationswhere aGLMwould be appropriate
and can incorporate possible nonlinear effects of continuous covariates
such as years since treatment (Hastie and Tibshirani, 1990). The GAM
was implemented with the log transformed mean plot-level larval
density estimates as the response variable, a Gaussian error structure
and identity link function,

log Dp;y þ c
� �

¼ β0 þ β1P þ f 1Tp;y þ εp;y; ð6Þ

where the βs are estimated parameters and f1 is an estimated non-
parametric regression spline curve. The flexibility of the regression
spline curve was optimized using an iterative method that rewards
model fit and penalizes model complexity (Wood, 2004). As with the
GLMbased on density, the variance of the natural log of the plot specific
density estimates σLN

2 as used to weight the plot-level density estimates
in the model fitting. The GAM analysis was performed using the
gam function in package mgcv (Wood, 2011) of the program R
(R Development Core Team, 2012).

Robinson et al. (2013) developed and validated a spatial age-
structured model (Fournier and Archibald, 1982) for sea lampreys and
applied it to the sea lamprey population in the St. Marys River. The
model estimated parameters of a stock-recruitment relationship, spatial
patterns in recruitment, natural mortality, treatment mortality, and
plot-specific abundance of larval and metamorphosing sea lampreys.
Plot-specific larval abundance changed due to recruitment, natural
mortality, Bayluscide treatment mortality, and age-specific larval
metamorphosis rates. The model was developed in AD Model Builder,
and parameters were estimated using Markov Chain Monte Carlo
(MCMC) using a Metropolis–Hastings algorithm (Fournier et al., 2012).
A Bayesian approach to parameter estimation was used (Gelman et al.,
2004), and themodel was fit tomean plot-specific abundance estimates
Fig. 2. Flow chart describing the estimation methods, performance c
from the entire 19-year deepwater electrofishing survey dataset. One
year projections of plot-specific larval abundance were produced using
the model equations and the resulting parameter estimates. The model
was fit to the 1993–2009 and 1993–2010 data to produce 2010 and
2011 projections respectively. A more detailed description of the
model can be found in Robinson et al. (2013).

The hybrid approach involved calculating themean density from the
sampling-based estimation method and the GLM based on catch data
for each plot. Both estimation methods were given equal weight in
the averaging process. The resulting plot-level density estimates were
evaluated based on the same criteria and process as the other five
estimation methods. Traditional model averaging approaches, such as
those based on AIC, could not be applied because the models use data
aggregated at different levels; and AIC-based model averaging requires
that all models use the same data.
Comparisons

The six methods of estimating plot level density of larval sea lam-
preys were evaluated based on three criteria (Fig. 2): the ability to (1)
accurately project plot-level density, (2) identify high density plots for
treatment, and (3) rank plots based on density in an order that most
closely matched the ranking for the validation data. The three criteria
have subtle but important differences and were designed to measure
outcomes for different objectives. Criterion 1 is a course, aggregated
metric that could be used if estimating abundance across all plots was
the primary objective. Criteria 2 and 3 deal with actually making treat-
ment decisions when resources are limited and only a subset plots can
be treated, which is often the case. For example, if a method has high
accuracy in low-density plots, but not in the highest density plots,
then criterion 1 could be misleading with respect to making treatment
decisions. Therefore, criterion 2 measures a methods ability to identify
the plots with the highest abundance. Likewise, criterion 3 is not auto-
matically satisfied by satisfying criterion 1 when resources to treat all
plots are not available, and some intermediate level of treatment effort
is desired. Estimates, rankings, and relationships from each method
were compared to those based on the intensive pre-treatment electro-
fishing surveys (validation data) from 2010 and 2011, which were
assumed to represent the best possible estimates. Methods with esti-
mates that were closer to those from the validation data were consid-
ered more accurate than those with greater discrepancy from the
riteria, and the steps and metrics associated with each criterion.

image of Fig.�2
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validation data. This allowed for 26 plot level comparisons for each
method, spanning two years.

We usedmedian absolute error between the estimates from the val-
idation data and the six estimationmethods for 2010 and 2011 to assess
the ability of each method to accurately project estimates of plot-level
larval density and abundance (criterion 1). The median errors and
median absolute errors were calculated as follows,

medianabsoluteerror ¼ median Dp−Vp

��� ���; ð7Þ

whereDp are the plot level density estimates fromone of the six estima-
tionmethods froma specific year and Vp are the density estimates based
on the validation sampling.

The ability of each estimationmethod to identify the highest density
plots (criterion 2) was assessed by comparing how many of the top
three or top five highest density plots in the validation data set were
also identified by each estimation method. This approach simulates a
three and a five plot treatment event.

The expected numbers of larvae killed per hectare treated was com-
pared to the number expected to be killed based on the validation data
for eachmethod (criterion 3). First the plots were ranked in descending
order based on the estimates of larval density. Then a Bayluscide treat-
ment was simulated by applying the estimated percent mortality from
an individual treatment event (51%, Robinson et al., 2013) to the valida-
tion estimate of larval abundance for each plot, with treatments being
applied to the plots with the highest projected density first for each
estimation method. Larvae killed per hectare treated relationships
were developed for each estimation method and the validation data
for 2010 and 2011. Estimation methods whose larvae killed per hectare
treated relationship was closest to the validation relationship were
considered better at rankings plots for treatment. The area between
the larvae killed per ha treated relationship based on the validation
data and the relationship for each estimation method was calculated
to characterize the overall similarity between each estimation method
and the validation data. This area also represents the potential loss in
treatment effectiveness based on each estimation method relative to
the validation data. Average reduction in larvae killed per ha treated
was calculated for each estimation method by dividing the area be-
tween the validation curve and the curve for each estimation method
by the total area of all plots.

Results

Estimates of plot-level density (larvae · ha−1) produced using
the validation data ranged from 0 to 18,700 in 2010, and from 523
to 4730 in 2011. Plot-level abundance estimates ranged from 0 to
142,000 in 2010, and from 4510 to 39,400 in 2011. Density estimates
produced using the validation data had moderate precision (mean CV
54%) but represented a substantial improvement in precision relative
to density estimates produced based on the data from the annual elec-
trofishing survey (mean CV 94%).

The GLMs and GAM fit the data reasonably well although they did
not explain a large percentage of the deviance (Table 1). Years since
Table 1
Percent deviance explained, parameter estimates, standard errors, test statistics, and P value
(GAM). The YST smoothed term is the regression spline fit of the years since treatment (YST) e
egorical plot effects associated with each model are not reported.

Model type Dependent variable Deviance explained Param

GLM Log(density + c) 35.60% Interc
YST

GLM Catch 22.40% Interc
YST

GAM Log(density + c) 37.50% Interc
YST (
treatment (YST) effectswere significant for eachmodelwith the density
of larvae increasing as the number of years since treatment increased.
Back-transformed YST effects for the GLM based on density data
and the GLM based on catch data were 1.17 and 1.10 respectively
(Table 1). This indicates a 17% increase in density or abundance for
each year a plot goes untreated based on the density data and a 10% in-
crease based on the catch data. The populationmodel alsofit reasonably
well (Robinson, 2013; Robinson et al., 2013).

The method that produced the most accurate estimates of larval sea
lamprey density varied by year. TheGLMbased on catchdata performed
the best over most performance metrics for 2010 and 2011 and was
therefore used, along with the sample-based approach, to develop
the hybrid approach. In 2010 the hybrid approach produced density es-
timates with the highest accuracy (median absolute error = 697 larvae
per ha) followed by the GLM based on catch (median absolute error =
857 larvae per ha; Table 2, Fig. 3A). The other four estimation methods
had larger median absolute errors (N1300 larvae per ha). In 2011 the
GLM and GAM based on density produced the most accurate estimates
of larval density (median absolute errors: GLM density = 681, GAM
density = 605) while the other four methods produced density esti-
mates with larger median absolute errors ranging from 1320 to 1620
larvae per ha in (Table 2, Fig. 3B).

The ability of each estimation method to identify plots with the
highest density varied between 2010 and 2011 (Table 3). The sampling
data identified the three plots with the highest larval density correctly,
followed by the GAM, the population model, and the hybrid approach,
all of which identified two of the top three plots based on density in
2010. The GLM based on density identified four of the top five plots
while the other five methods all identified three of the top five plots
in 2010. The sampling data, theGLMbased on catch data, and the hybrid
approach, all identified two of the top three plots while the other three
methods only identified one of the top three based on density in 2011.
The GLM based on catch data and the hybrid approach identified four
of the top five plots while the other four methods identified three or
fewer in 2011.

In 2010 the plot-level density rankings based on the sampling data
resulted in a larva killed per ha treated relationship that was the same
as the validation data for very high density plots (Fig. 4A) and the hybrid
approach was very similar to the relationship based on the sampling
data. The GLMs based on density and catch data performed similarly,
producing a relationship that was close to the validation relationship
for high and medium density plots while the GAM and the population
model deviated from the validation relationship for all but the highest
density plots in 2010. The sampling-based method resulted in the
smallest reduction difference in the average number of larvae killed
per ha (7500 larvae per ha) relative to the validation data, followed by
the hybrid approach (8620 larvae per ha) in 2010 (Table 2). The reduc-
tion in the number of larvae killed based on the other four methods
ranged from 14,200 to 22,000 larvae per ha. In 2011 the hybrid ap-
proach represented an improvement upon the other methods, being
very close to the validation relationship (Fig. 4B). The GLM based on
catch data also performed well, producing a larva killed per ha treated
relationship that was close to the validation relationship for high,medi-
um and low density plots. The other four methods performed similarly
s associated with the generalized linear models (GLM) and generalized additive models
ffect of the GAM and the test statistic for that term is an F value not a z value. The 70 cat-

eter Estimate Std. err z Value P(N|z|)

ept 5.059 0.550 9.19 b0.001
0.158 0.013 12.59 b0.001

ept 0.305 0.765 0.40 0.690
0.100 0.006 17.44 b0.001

ept 5.961 0.545 10.94 b0.001
smooth) 35.23 b0.001



Table 2
Median absolute error of density estimates and reduction in the average number of larvae
killed per ha in 2010 and 2011. Median absolute error is the median of the absolute value
of the difference between the density estimates based on each estimation method and
those based on the validation data. Reduction in larval kill per ha is the reduction in
larvae killed based on each density estimation method compared to the validation data.
Density estimation methods include previous year's sample-based estimates (Sampling),
the generalized linear model based on density data (GLM density), the generalized linear
model based on catch data (GLM catch), the generalized additive model based on density
data (GAMdensity), the spatial age-structured populationmodel (Populationmodel), and
the average of the density estimates produced using the sampling data and the GLM based
on catch data (Hybrid approach).

Median abs. error Kill reduction per ha

Method 2010 2011 2010 2011
Sampling data 1460 1610 7500 6390
GLM density 1300 681 15,700 8240
GLM catch 857 1620 14,200 3630
GAM density 1300 605 22,000 8370
Population model 1380 1150 14400 9150
Hybrid approach 697 1320 8620 1780
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to each other, producing a larva killed per ha treated relationship that
was close to the validation data for only the high density plots in
2011. The hybrid approach resulted in the smallest reduction in average
number of larvae killed per ha (1780 larvae per ha), followed by the
GLM based on catch data (3630 larvae per ha) in 2011. The reduction
in the number of larvae killed based on the other four methods ranged
from 6390 to 9150 larvae per ha.

Discussion

Our results suggest that model-based methods could be used to
replace expert judgment in the process to select plots for sea lamprey
Fig. 3. Plot-level larval density projections for 2010 (A) and 2011 (B) based on pre-treatment va
based on density data (GLMdensity), a generalized linearmodel based on catch data (GLM catc
and the hybrid approach. The hybrid approach is produced by averaging the density estimates fr
errors with the exception of the populationmodel where they represent 90% credible intervals.
tification numbers and are listed from the lowest to the highest based on validation density es
control in the St. Marys River. Alternative model-based approaches
have been developed to inform sea lamprey control decisions in the
St. Marys River (Haeseker et al., 2003, 2007) and for other streams
(Christie et al., 2003; Hansen and Jones, 2008a). However, the previous
model-based approaches specific to the St. Marys River did not provide
spatially specific larval density estimates necessary to drive annual
treatment decisions and did not make use of the long time series of
available deepwater electrofishing data (Haeseker et al., 2003, 2007).
Currently, treatment decisions in the St. Marys River are driven by the
previous year's deepwater electrofishing survey combined with expert
judgment. This approach is limited by sample size, the subjectivity of
expert judgment, and the small number of larvae greater than
100 mm observed in any given year. The GLM based on catch data for
spatially specific density estimation can use the available long-term
data set, as well as the most recent data, to inform treatment decisions
for sea lamprey control and replace expert judgment. A hybrid approach
that averages both the sampling data in the most recent year with a
GLM based on catch data performed well in our study and combines
the benefits of using the whole time series to inform control decisions
while also relying on the most recent year's data. It is important to
note that none of the model-based approaches we considered incorpo-
rates the potential for temporal changes in larval sea lamprey habitat.

For model comparison purposes, the validation data represent the
best data available for estimating larval density and abundance because
of the increased sampling intensity and closer temporal proximity to the
timing of potential treatment events. However, the validation data pro-
duced density estimates with only moderate precision given the high
sample size (mean CV of density = 54%). This is likely a consequence
of highly aggregated spatial distributions of larval sea lampreys even
at the scale of a treatment plot (Schleen et al., 2003) and of correcting
for the selectivity of the deepwater electrofishing gear (Bergstedt and
lidation data, sampling-based estimates from the previous year, a generalized linearmodel
h), a generalized additivemodel based on density data (GAMdensity), a populationmodel,
om the sampling data and theGLMbased on catch data. Error bars represent two standard
Sample based estimates of zero have no error bars. Numbers listed on x axis are plot iden-
timates.
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Table 3
Plots listed in descending order based on estimated density for eachmethod in 2010 and 2011, and comparedwith the priority order based on the validation rank. Numbers listed are plot
identification numbers. Density estimation methods include previous year's sample-based estimates (Sampling), the generalized linear model based on density data (GLM density), the
generalized linearmodel based on catch data (GLM catch), the generalized additivemodel based on density data (GAMdensity), the spatial age-structured populationmodel (Population
model), and the average of thedensity estimates produced using the sampling data and theGLMbased on catchdata (Hybrid approach). A single asterisk indicates a sample based estimate
of zero larvae.When this occurred, plots were ranked in numerical order. A double asterisk indicated no sampling occurred. The top five highest density plots based on the validation data
are in bold text, and the top three are in bold italics.

Year Rank Validation Sampling data GLM density GLM catch GAM density Population model Hybrid approach

2010 1 3 3 5 1 5 20 3
2 20 20 20 16 20 5 1
3 4001 4001 1 3 4001 3 20
4 30 31 3 5 363 422 4001
5 5 532 4001 20 1 532 16
6 16 24 363 4001 3 363 5
7 363 5 422 172 422 1 31
8 172 30 31 31 532 30 634
9 1 1* 18 363 18 24 24

10 24 16* 16 422 31 365 172
11 365 18* 365 532 365 4001 30
12 532 40* 30 18 24 18 363
13 18 172* 532 30 30 16 422
14 40 363* 172 24 16 31 18
15 422 365* 24 365 172 172 365
16 31 422* 40 40 40 40 40

2011 1 1 112 111 111 111 111 1
2 3 3 112 1 112 112 112
3 112 154 22 112 20 20 111
4 111 111 20 21 22 152 3
5 21 152 153 154 153 22 154
6 154 20 152 20 152 153 20
7 22 22 1 3 1 3 162
8 153 153 154 152 154 154 21
9 20 21* 3 153 3 21 22

10 152 1** 21 22 21 1 153
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Genovese, 1994). However, density estimates from the validation data
had substantially improved precision compared to those produced
using the annual electrofishing survey in recent years (mean CV of
density = 94%). Recent simulation results by Robinson (2013) also in-
dicated that increased sampling intensity associated with the validation
data yieldmore precise density estimates and a better ability to properly
identify plots for treatment based on density. However, the moderate
precision of the density estimates produced using the validation data
adds additional uncertainty about the performance of the estimation
methods because our analyses treated the validation data as known
with no uncertainty.

Sampling-based estimates under the current level of sampling inten-
sity appear adequate to inform treatment decisionswithin the St. Marys
River. However, in some years not all plots are sampled, and occasional-
ly no sampling is conducted (Robinson, 2013). If some or all plots are
not sampled, a model-based method must be used to inform treatment
efforts the following year. In most situations the GLM based on catch
data performed well. The consistent performance of this estimation
method across years and criteria makes it a good choice to fill in gaps
in the sampling data, replace the sample based estimates entirely if
sampling is not conducted, or to use in conjunction with the sampling-
based estimates by averaging the results of the two (i.e., the hybrid
approach). The GLM based on catch data has the added benefit of
being the simplest of the model-based methods to implement because
it uses data at the level of an individual sample and requires noweighting
in the model fitting process.

Even given the adequate performance of the sampling-based esti-
mates, there are several potential issues associated with using the
sampling-based estimates from the previous year alone to inform treat-
ment decisions. At the current sampling intensity many of the plots
have density and abundance estimates of zero. This occurred in eight
of the 16 plots in 2010 and in one of the ten plots in 2011 for which val-
idation data were collected. In the absence of model-based approaches
there is no way of ranking those plots for treatment other than to use
additional information such as density estimates from a year earlier.
Sometimes even high density plots are not sampled for a variety of rea-
sons. For example, in 2011 plot one (one of the smallest plots in the
river) was not sampled but was identified as a high density plot based
on our validation data and the GLMbased on catch data. The probability
of catching no sea lampreys in a high density plot can be substantial for
small plots, because the number of samples taken in each plot is based
on plot area, with some plots having only one sample in a given year.
Limited sampling of small plots leads to a risk of small high density
plots going untreated, resulting in a missed opportunity to kill a rela-
tively large number of sea lampreys with a small-scale treatment.

The method that performs best also depends on the level of treat-
ment that occurs in each year (Robinson, 2013). During some years
there are limited resources available for treatment and only the highest
density plots can be treated, while in other years all plots are treated. If
only high density plots are to be treated, sample-based estimates are
likely adequate to inform treatment. However, if resources are available
to treatmedium and low density plots, incorporating the GLM based on
catch data as part of the hybrid approach will likely be beneficial. The
opportunity cost associated with sampling and modeling efforts must
also be taken in account because money spent on sampling andmodel-
ing cannot be spent on treatment (Fenichel and Hansen, 2010; Hansen
and Jones, 2008b).

Two major differences in the approach presented here and the ap-
proach currently used to select plots for treatment are 1) we considered
the density of all larvae in a plot while the current approach considers
only larvae greater than 100mm, and 2)we do not include expert judg-
ment as part of our analysis. The 100mmtreatment strategy is predicat-
ed upon the assumption that a treatment will kill a large majority of
individuals just prior to transformation. The effectiveness of plot-level
Bayluscide applications may be less than previously thought; 51% mor-
tality per treatment (Robinson et al., 2013), compared to 88% effective
(Fodale et al., 2003). Strategies that consider the entire larval length
structure when selecting plots for treatment may be beneficial given
the uncertainty surrounding Bayluscide based treatment effectiveness
and the infrequency with which larvae greater than 100 mm are



Fig. 4. The expected number of larvae killed in 2010 (A) and 2011 (B) as plots are treated
based on rankings in order of decreasing density for eachmethod. The expectednumber of
larvae killed is based on the density from the pre-treatment validation data and the esti-
mate of treatment effectiveness from Robinson et al. (2013). The hybrid approach is the
relationship produced by averaging the density estimates from the sampling data and
the GLM based on catch data. The gray dashed line is the average expected relationship
if plots were treated in random order.
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actually observed in the electrofishing catch. If only larvae larger than
100 mm are used, the sample sizes are too small for the model-based
methods to produce reliable estimates. For example, in 2010 and
2011, the most recent years incorporated in the time series, there
were only five and six larvae greater than 100mm captured respective-
ly, and only one instance in which more than one larva greater the 100
mmwas captured in a single plot. In contrast, using all sizes of larvae in-
creases the number of observations to 20 and 18 in 2010 and 2011, re-
spectively. The rationale behind the expert judgment approach is to be
able to treat “known” high density plots when the previous year's sam-
pling fails to identify them as such. Combining the sample-based and
model-based approaches in the hybrid-method approximates the cur-
rent combination of the sample-based approach and expert judgment
in a quantitative framework. The hybrid approach, which combines
the entire available dataset alongwith themost recent year's density es-
timates, provides away to explicitly consider two decades of prior infor-
mation about where high densities of larval sea lampreys will occur
while still relying on the most up to date information.

Choosingbetween the sample andmodel-based estimationmethods
presents a tradeoff. The model-based methods can incorporate the en-
tire 19-year data set in the estimation process, but lack the flexibility
to identify anomalous high density plots because plot effects and the
influence of years-since-treatment cannot vary annually. The sample-
based estimation method may identify anomalous high density plots,
but is limited by the intensity and coverage of the samplingwhich varies
annually. Because of these limitations, it is likely wise to incorporate
both the flexibility of the sampling-based estimation and the more
long term information incorporated in the model-based methods. The
consistent performance across criteria and years of the hybrid approach,
which combined the sample based method and the best model-based
method, suggests that it is a viable option to guide treatment decisions
for sea lamprey larvae in the St. Marys River. This approach should lead
to amore efficient and effective Bayluscide treatment program in the St.
Marys River and should aid in the decisionmaking process surrounding
the allocation of resources to sea lamprey control efforts within and
among systems.
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